INTERNATIONAL INDIAN SCHOOL, RIYADH

FIRST - TERM WORKSHEET

CHAPTER 3 - MATRICES

1. Let $A=\left[\begin{array}{rr}2 & 3 \\ -1 & 2\end{array}\right]$, then show that $A^{2}-4 A+7 I=0$. Using the above, calculate A^{5} also.
2. Find non zero values of x satisfying

$$
\mathrm{x}\left[\begin{array}{rr}
2 x & 2 \\
3 & x
\end{array}\right]+2\left[\begin{array}{ll}
8 & 5 x \\
4 & 4 x
\end{array}\right]=2\left[\begin{array}{cc}
x^{2}+8 & 24 \\
10 & 6 x
\end{array}\right]
$$

3. If A is a square matrix X such that $A^{2}=A$ show that

$$
(1+A)^{3}=7 A+1
$$

4. Find the matrix X such that

$$
\left[\begin{array}{rr}
2 & -1 \\
0 & 1 \\
-2 & 4
\end{array}\right] X=\left[\begin{array}{rrr}
-1 & -8 & -10 \\
3 & 4 & 0 \\
10 & 20 & 10
\end{array}\right]
$$

5. If $A=\left[\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{lll}-2 & -1 & -4\end{array}\right]$

Verify that $(A B)^{-1}=B^{1} A^{1}$
6. If A and B are symmetrical, then show that $(A B+B A)$ is symmetric and $(A B-B A)$ is skew symmetric.
7. If $f(x)=x^{2}-4 x+1$, find $f(A)$ given $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
8. Find x if $\left[\begin{array}{ll}x & 1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ -2 & -3\end{array}\right]\left[\begin{array}{l}x \\ 3\end{array}\right]=0$
9. Find the inverse by elementary transformations of

$$
A=\left[\begin{array}{rrr}
-1 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]
$$

10. If $\mathrm{A}=\left[\begin{array}{rrr}1 & 3 & 5 \\ -2 & 5 & 7\end{array}\right]$ and $2 \mathrm{~A}-3 \mathrm{~B}=\left[\begin{array}{rrr}4 & 5 & -9 \\ 1 & 2 & 3\end{array}\right]$
find B.
11. If $\mathrm{A}=\left[\begin{array}{rr}\operatorname{Cos} \alpha & \operatorname{Sin} \alpha \\ -\operatorname{Sin} \alpha & \operatorname{Cos} \alpha\end{array}\right]$, show that

$$
A^{2}=\left[\begin{array}{rl}
\operatorname{Cos} 2 \alpha & \operatorname{Sin} 2 \alpha \\
-\operatorname{Sin} 2 \alpha & \operatorname{Cos} 2 \alpha
\end{array}\right]
$$

12. Given $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right]$, find a and b such that $A^{2}+a l=b A$
13. If $A=\left[\begin{array}{rr}0 & 1 \\ -1 & 1\end{array}\right]$, find p and q so that $(p l+q A)^{2}=A$
14. If $A=\left[\begin{array}{rr}-2 & 3 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & 0 \\ 1 & 2\end{array}\right]$, find $(A+2 B)^{1}$
15. If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, prove that $(a l+b A)^{3}=a^{3} I+3 a^{2} b A$
16. Show that all the elements of the main diagonal of a skew symmetric matrix are zero.
17. Express as the sum of a symmetric and a skew symmetric matrix and verify, given $\quad A=\left[\begin{array}{rrr}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]$
18. If $2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$, find $x+y$
19. Using elementary operations, find the inverse of the matrix

$$
A=\left[\begin{array}{rrr}
1 & 3 & -2 \\
-3 & 0 & -1 \\
2 & 1 & 0
\end{array}\right]
$$

20. If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, show that $(a l+b A)^{n}=a^{n} I+n a^{n-1} b A$ using mathematical induction.
